Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Exp Lung Res ; 48(9-10): 266-274, 2022.
Article in English | MEDLINE | ID: covidwho-2087464

ABSTRACT

Background and Aim: The SplashGuard CG (SG) is a barrier enclosure developed to protect healthcare workers from SARS-CoV-2 transmission during aerosol-generating procedures. Our objective was to evaluate the protection provided by the SG against aerosolized particles (AP), using a pediatric simulation model of spontaneous ventilation (SV) and noninvasive ventilation (NIV). Methods: An aerosol generator was connected to the airways of a pediatric high-fidelity manikin with a breathing simulator. AP concentrations were measured both in SV and NIV in the following conditions: with and without SG, inside and outside the SG, with and without suction applied to the device. Results: In the SV simulated setting, AP peaks were lower with SG: 0.1 × 105 particles/L compared to without: 1.6 × 105, only when the ports were closed and suction applied. In the NIV simulated setting, AP peaks outside the SG were lower than without SG (20.5 × 105 particles/L), whatever the situation, without suction (14.4 × 105particles/L), with suction and ports open or closed: 10.3 and 0.7 × 105 particles/L. In SV and NIV simulated settings, the AP peaks measured within the SG were much higher than the AP peaks measured without SG, even when suction was applied to the device. Conclusions: The SG seems to decrease peak AP exposure in the 2 ventilation contexts, but only with closed port and suction in SV. However, high concentrations of AP remain inside even with suction and SG should be used cautiously.


Subject(s)
Aerosolized Particles and Droplets , COVID-19 , Humans , Child , SARS-CoV-2 , COVID-19/prevention & control , Respiratory Aerosols and Droplets , Suction
2.
Crit Care Res Pract ; 2020: 3842506, 2020.
Article in English | MEDLINE | ID: covidwho-1004214

ABSTRACT

BACKGROUND: The current COVID-19 pandemic has resulted in over 54,800,000 SARS-CoV-2 infections worldwide with a mortality rate of around 2.5%. As observed in other airborne viral infections such as influenza and SARS-CoV-1, healthcare workers are at high risk for infection when performing aerosol-generating medical procedures (AGMP). Additionally, the threats of a global shortage of standard personal protective equipment (PPE) prompted many healthcare workers to explore alternative protective enclosures, such as the "aerosol box" invented by a Taiwanese anesthetist. Our study includes the design process of a protective barrier enclosure and its subsequent clinical implementation in the management of critically ill adults and children infected with SARS-CoV-2. METHODS AND RESULTS: The barrier enclosure was designed for use in our tertiary care facility and named "SplashGuard CG" (CG for Care Givers). The device has been adapted using a multi- and interdisciplinary approach, with collaboration between physicians, respiratory therapists, nurses, and biomechanical engineers. Computer-aided design and simulation sessions throughout the entire process facilitated the rapid and safe implementation of the SplashGuard CG in different settings (intensive care unit, emergency department, and the operating room) during AGMPs such as bag-valve-mask ventilation, nasopharyngeal suctioning, intubation and extubation, and noninvasive ventilation. Indications for use and anticipatory precautions were communicated to all healthcare workers using the SplashGuard CG. The entire process was completed within one month. CONCLUSION: The rapid design, development, and clinical implementation of a new barrier enclosure, the "SplashGuard CG," was feasible in this time of crisis thanks to close collaboration between medical and engineering teams and the use of recurring simulation sessions to test and improve the initial prototypes. Following this accelerated process, it is necessary to maintain team skills, monitor any undesirable effects, and evaluate and continuously improve this new device.

4.
Crit Care Explor ; 2(10): e0234, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-900556

ABSTRACT

OBJECTIVES: To assess the impact of the use of aerosol barrier device, Splashguard-CG, on the endotracheal intubation with different types of laryngoscope. DESIGN: A pilot randomized sequential crossover simulation study. SETTING: A single academic center in Japan. SUBJECTS: Physicians in a single academic university hospital in Japan. INTERVENTIONS: Use of Splashguard-CG. MEASUREMENTS AND MAIN RESULTS: All participants were asked to perform endotracheal intubation to a manikin simulator using three different devices (Macintosh laryngoscope; Airway Scope [Nihon Kohden, Tokyo, Japan]; and McGRATH MAC [Aircraft Medical, Edinburgh, United Kingdom]) with and without Splashguard-CG in place, which required a total of six attempts and measured the intubation time as the primary outcome. Thirty physicians (15 experienced physicians and 15 less-experienced physicians) were included. Intubation time using Macintosh laryngoscope was significantly longer in the group with Macintosh laryngoscope and Splashguard-CG compared with the group without Splashguard-CG by the median difference of 4.3 seconds (interquartile range, 2.6-7.4 s; p < 0.001). There was no significant increase in the intubation time with or without Splashguard-CG for the Airway Scope (0.6 s; interquartile range, -3.7 to 3.2 s; p = 0.97) and the McGRATH MAC (0.5 s; interquartile range, -1.4 to 4.6 s; p = 0.09). This trend was found in both the experienced and less-experienced groups. We observed significant increases of subjective difficulty of the endotracheal intubation evaluated by using a Visual Analog Scale in the Splashguard-CG groups for all three types of devices. CONCLUSIONS: The use of a video laryngoscope with an aerosol barrier device does not impact the time required endotracheal intubation in a simulation environment. This method can be considered as airway management for coronavirus disease 2019.

SELECTION OF CITATIONS
SEARCH DETAIL